On the base point free theorem for KLT threefolds in large characteristic

نویسندگان

چکیده

In this article we present a refinement of the base point free theorem for threefolds in positive characteristic. If $L$ is nef Cartier divisor numerical dimension at least one on projective Kawamata log terminal threefold $(X,\Delta)$ over perfect field $k$ characteristic $p \gg 0$ such that $L-(K_X+\Delta)$ big and nef, then show linear system $|mL|$ all sufficiently large integer $m>0$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Remark on the Base Point Free Theorem

We give a remark on the Kawamata-Shokurov base point free theorem. We reprove the main theorem of Kawamata’s paper: Pluricanonical systems on minimal algebraic varieties, without using the notion of generalized normal crossing varieties.

متن کامل

Effective Base Point Free Theorem for Log Canonical Pairs

We prove Kollár’s effective base point free theorem for log canonical pairs.

متن کامل

Effective Base Point Free Theorem for Log Canonical Pairs Ii

We prove Angehrn-Siu type effective base point freeness and point separation for log canonical pairs.

متن کامل

Base Point Free Theorem of Reid-fukuda Type

Let (X,∆) be a proper dlt pair and L a nef Cartier divisor such that aL − (KX +∆) is nef and log big on (X,∆) for some a ∈ Z>0. Then |mL| is base point free for every m ≫ 0. 0. Introduction The purpose of this paper is to prove the following theorem. This type of base point freeness was suggested by M. Reid in [Re, 10.4]. Theorem 0.1 (Base point free theorem of Reid-Fukuda type). Assume that (X...

متن کامل

Effective Base Point Free Theorem for Log Canonical Pairs —kollár Type Theorem—

We prove Kollár’s effective base point free theorem for log canonical pairs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annali della Scuola normale superiore di Pisa. Classe di scienze

سال: 2021

ISSN: ['0391-173X', '2036-2145']

DOI: https://doi.org/10.2422/2036-2145.201908_013